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Abstract—The effect of the variation of specific heat, density, viscosity and thermal conductivity with
temperature, is investigated theoretically for developed air flow cooling in a circular tube. Numerical
solutions are presented which were obtained using a digital computer and are for a range of air
temperatures from 350 to 2500°K.

The momentum and energy equations are considered and numerical solutions of temperature and
velocity profiles, Nusselt number and pressure drop coefficient are given for different mixed mean
temperatures,

Solutions are presented for the conditions of:

1. All axial temperature gradients at fixed radius equal to the bulk temperature gradient.
2. Constant wall temperature.

In addition to showing the effects of property variation, the solutions show also that the effect of
axial conduction becomes important at low Reynolds number and that the effect of axial momentum
change can be considerable for large temperature differences between air and wall. For vertically
upward flow the effect of gravitational force is studied and numerical solution indicates a flow reversal

near the wall at a lower value of Gr/Re than in the uniform property solution.

NOMENCLATURE r, radius;

mean specific heat at constant pressure rw, tube radius;

between T and T; . . . r

mean specific heat at constant pressure X dimensionless radius = -
between Ty and Tn; 2

. Um 'w Pm

specific heat at constant pressure at Re, Reynolds number = ——— ;
temperature T, Km
friction coefficient; T, absolute temperature at radius r;
pressure drop coefficient, defined by Tm, mixed mean temperature (abs.) or bulk
(13); temperature;

acceleration due to gravity; Ty, wall temperature (abs.);

mass rate of flow through tube; u,  velocity lat radi;sﬁr; b

_ um, mean velocity define 4);

Grashof number = & p,,,T &(Tm TW), " Y y (u)

P . m b, U, dimensionless velocity = — ;

or a perfect gas; Um
enthalpy/unit mass, mpasured above U, velocity parameter defined by (9);
wall temperature, at radius r; x, axial distance along tube;
thermal conductmt;' at radius r; X, dimensionless axial distance = x/r.

ary

Nusselt number = T ; Greek symbols
pressure; a, heat-transfer coefficient;
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. . T— Ty
5,  dimensionless temperature = -~ ;
Tm —_ Tw
w,  viscosity at radius r;

p,  density at radius r.

Subscripts
m, mean condition. Properties evaluated at
mixed mean temperature, Tp;
w,  condition at tube wall.

INTRODUCTION

THE laminar flow of a fluid with heat transfer in
a circular tube has been analysed by many
workers. The basic differential equation for
conservation of energy for such flow, the
Fourier-Poisson equation, was first correctly
derived by Poisson {1] in 18335. Solutions of the
equation obtained by Graetz in 1883-1885 are
summarized by Drew [2]. The first solution of
Graetz was for an axial velocity unchanging
with radius and the second, more practical,
solution was for a parabolic velocity profile with
respect to radius, as given by Poiseuille’s equa-
tion. Both solutions were for uniform wall tem-
perature. Graetz obtained a temperature profile
and a heat-transfer coefficient in the form of
infinite series of which the first three terms were
evaluated. In 1956 Sellars, Tribus and Klein [3]
gave a formula for calculating all the eigenvalues
and eigenfunctions, not only for the condition
of uniform wall temperature, but also of uniform
wall heat flux and of linear wall temperature.

All these solutions give the ““thermal boundary
layer” development in the axial direction. The
analyses share the following assumptions:

1. Fluid specific heat, conductivity, viscosity
and density independent of temperature.

2. Effects of gravitational force and varying
density (free convection) neglected.

3. Axial conduction and momentum change
neglected.

4, Energy dissipation due to viscosity neg-
lected.

5. No radial component of velocity.

6. Symmetry about tube axis.

Analysis of the problem is simplified in the
region where the velocity and thermal boundary
layers have become fully developed, where there
is no radial component of velocity and where
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the dimensionless velocity and temperature
profiles are unchanging with axial distance.
This is the situation at distances beyond the
“entry length” and is called the region of fully
developed flow.

Experiments revealed departures from the
Graetz analysis and Colburn {4] ascribed these
to viscosity variation with temperature, causing
in developed flow a deviation from Poiseuille's
parabolic velocity profile, and also, at lower
Reynolds numbers, to natural convection. By
introducing a viscosity ratio and the Grashof
number into non-dimensional relationships the
experimental results could be empirically cor-
related. The same phenomena also explained
departures of the fluid friction factor from the
isothermal value.

Attempts have been made to explain the
deviations from “isothermal” solutions by
theoretical analysis using the momentum and
energy equations. Early work allowed separately
for viscosity variations and for density varia-
tions. Pigford [5] summarizes these attempts and
gives solutions allowing both for variation in
viscosity and for variation in density in the
gravitational field. His analysis is for high flow
rates in short vertical tubes with uniform wall
temperature,

Deissler [6] has allowed for variations of
viscosity, density and thermal conductivity with
temperature in fully developed flow. He derives
theoretical velocity and temperature profiles,
friction parameters and Nusselt numbers for
gases and liquid metals at different ratios of bulk
temperature to wall temperature. The wall
boundary condition is that of constant tempera-
ture difference between fluid at a given radius
and wall, irrespective of axial distance. For
constant property values this is the uniform heat
flux condition. Diessler makes assumptions (2).
(3), (4), (5), and (6) listed above and also that
the specific heat is constant.

Itshould be noted that the concept of developed
flow is somewhat altered as a consequence of
property variations. The velocity and tempera-
ture profiles continue to change even after the
complete development of the two boundary
layers. Developed flow under these conditions is
taken to mean the state of affairs where both
boundary layers, which begin to build up at the
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walls at entry to the tube, have extended across
the full diameter, notwithstanding some con-
tinuing change in the profiles. It is no longer
strictly true to equate the radial velocity com-
ponent to zero. However, because this velocity
is usually small compared with the axial com-
ponent there is, in such cases, no great error in
analyses based on developed flow, with no
radial velocity. Hallman 7] presents some experi-
mental evidence which supports the local use of
the results of heat-transfer analyses on the basis
of such a fully developed flow model.

. Free convection effects have been investigated
theoretically by Ostroumov [8], Hallman {9} and
Hanratty, Rosen and Kabel [10]. These investi-
gators solve the momentum and energy equa-
tions allowing for density variation in the gravi-
tational field, simplification being achieved by
analysing the uniform heat flux condition with
developed flow. All fluid properties except the
density are assumed constant and any radial
component of velocity is neglected. The analyses
demonstrate the distortion of velocity and tem-
perature profiles due to free convection. Scheele,
Rosen and Hanratty [11] carried out experi-
mental studies of the transition to disturbed flow
in vertical tubes and Hallman [7] obtained ex-
perimental values of Nusselt numbers and also
noted the development of instabilities.

The mathematical investigation of Singh [12]
extends the Graetz, uniform wall temperature,
solution for Poiseuille flow by allowing for the
effect of axial heat conduction, as well as energy
dissipation due to viscosity and internal heat
generation. Singh found that for constant proper-
ties the effect of axial conduction was almost
negligible for Peclet numbers greater than 100.
The range of Peclet numbers from 1 to 100 for
uniform heat flux and constant property values
has been analysed numerically by Petukhov and
Tsvetkov [13].

Despite extensive investigations of laminar
flow heat transfer in circular tubes, it is seen
that recourse always has been made to some of
the assumptions (1-6) listed previously. The
present authors’ interest in the problem arises
from studies on hot freshly burnt gases flowing
at low Reynolds numbers in cooled, uniform
temperature, tubes. Under these conditions, the
variation of fluid properties with temperature
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clearly is significant, as is free convection and,
possibly, also axial conduction and change of
momentum. It was therefore necessary to carry
out the present analyses for this combination of
circumstances. Information on the properties
of gases is not, in general, available throughout
the temperature range of interest. Data on the
properties of air, however, are available in the
range 250 to 2500°K and it was decided to
use these data in the analysis as this would pro-
vide a guide to the behaviour of other hot gases.
The property values used are those listed by
Eckert and Drake [14] and shown graphically in
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F1c. 1. Conductivity, viscosity and specific heat of air as
functions of temperature at atmospheric pressure.
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Fig. 1, supplemented by values of enthalpy
taken from Hilsenrath [15].

A complete solution of the problem is a matter
of great complexity even with the aid of digital
computers and has not, as yet, been accom-
plished. The neglect of any radial component of
velocity introduces considerable mathematical
simplification and is the most restrictive assump-
tion which has been made in deriving the results
presented by the present authors. These are
presented not as complete solutions but as a
contribution towards a fuller understanding of
the problem. Velocity and temperature profiles,
Nusselt numbers and pressure drop coefficients
have been evaluated numerically for a range of
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conditions in developed flow using the Ferranti
Pegasus computer at Leeds University.

The different influences are shown by the pre-
sentation of solutions under four headings:

a. Uniform temperature gradient solutions.

b. Uniform enthalpy profile, and uniform wall
temperature solutions.

¢. Free convection effects.

d. Axial conduction and momentum change
effects.

ANALYSIS
The essentials of the analysis are the derivation
of the velocity profile from the momentum
equation and of the temperature profile from the
energy equation. These profiles are then able to
yield the pressure drop coefficient and the
Nusselt number.

Assumptions
It is assumed that flow is steady, axisymmetric,
and that the energy dissipation due to viscosity
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may be neglected. The equation of the state of
the fluid is that of a perfect gas with p propor-
tional to p/T.

It is further assumed that the flow is fully
developed with no radial component of velocity.
Usually this velocity would be very much smaller
than the axial velocity and this assumption is
justified, but this is not so at very low flow rates.

The numerical results which are presented are
derived from the momentum and energy equa-
tions without recourse to the continuity equation
dupjox = 0. It is found that, having obtained
the velocity and temperature profiles, this last
equation is not fully satisfied. The reason for
this inconsistency lies in the neglect of any radial
velocity. Allowance for this would produce
somewhat more accurate solutions but at the
expense of a considerable increase in mathema-
tical complexity. The continuity equation does
not imply that the axial momentum change on
the left-hand side of the momentum equation (1),
below, is necessarily negligible.

Momentum equation

The cases of vertically upward flow with cooling of the gas is analysed. The Navier-Stokes
equation, allowing for axial changes of momentum and for gravitational force opposing niotion,

is given in polar coordinates by

et (B EE) e,
(ép/ér) =0 and boundary conditions are;
r=0 (duor)=0 ()
r=ry u=20 3)
Define a mean velocity of flow given by

um = (Gmr2, pm) 4)

and a Reynolds number
Re — 2uUn ry pm _ 2G 5)

Bm T pmrw

Repn is constant along the tube length.

As (Gr/[Re) = 2 ry g (Tm — Tw)| u% Tm (1) gives

U fouy Tm
um \0X) ~

[(78) (e =m0 - [ (Fot'Re) (5] +

me

Re

s e (o) + (wesa) () @

3um pum
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Integrating with respect to R between the limits R = 0 and R = R and using (2) in the dimen-
sionless form gives,

. , - \ TRIT). dR
)= [(222) 5] o om0 )

R cu
[ Reum T, (I (UR/Tum)(au/c?X)dR) 4[y (R/um) (ayéy/ax).dk
m im 9
+ ( 2 ) # R -3 u R - (M

Integrating again with respect to R between the limits R = 1 and R = R and using (3) in the
dimensionless form gives,

R
2 R RI(R[T).dR
o 2

pm Re 0X (Tm — Tw)
R R
R [(UR|Tum)(0ufoX).dR R { (Rlum).[ou (BufoX)/0X].dR
Retm Tm (1o e -dR (8)
2 g R 3 e R
In the derivation of numerical solutions it is convenient to introduce a parameter
U = — (2u[(8p/0x) r}, 8] ©)
and _
Un = — [2 um/(dp[ox) r}, g). (10)
Clearly o
U= (U/Un).

From (4) and (9)

1

_ @ UR

Un = [(—2[21# up dr)/(-rrrg, p,,.éi‘:‘r2 ):I =2Tm IT -dR. (1)
0 0

In terms of the parameter U, (8) becomes

R
R R
R OnTiu  GrhRD-GR

U=~ §(Tm — Tw PR IRT
RepmTn | UR éu 4 R ou(2ufox)
\é bm Lm LG8 R T R eowox)
R 2 jTum ax 4R 3Iu,,. ax IR
Umj 2 dR. (12)
w R

i

Pressure drop coefficient, F

This defines the pressure drop in the most general case, when allowance is made for viscosity,
free convection and axial momentum change. In analyses where free convection and axial momentum
change are neglected and where the pressure change is due to viscosity alone, then F is the same as
the more widely used friction coefficient, f. This is true in the solutions presented under headings
(a) and (b) below.
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Let
o Fom uy, .
x= T g (13)
Equations (5), (10) and (13) give
-4 14)
Energy equation
This is
okr (8T /or) ok (0T [ax) oh «
or +r ox T U Ay (13
Boundary conditions are
oT
r=20 5= 0 (16)
r=ry T = Tw (17)
Integrating (15) twice with respect to r, between the limits shown, gives
j (u oh_ ok (8T/8x)) o
P — —— —
i ox ox
1o
Tw—T= J. o dr (18)

r
Let enthalpies be measured above a datum temperature equal to Ty. The mixed mean tempera-
ture, T, is defined by

T (clem) pu2 nr (T — Tu) . dr

Tm—Tw=" e (19
Substituting (18) in (19) gives
. T {u pr(@hfox) — r [0k (0TJox)ox]} dr o
— pu2mr 0 <dr
Tw—Tw=—|c , Gkr (20)

Consideration of the boundary conditions and introduction of the heat-transfer coefficient yields:
T akr (8T/0x ¢h,
a(Tw—Tm)2ﬂrw+2wJ_(ax—H,dr=Gaxn o

0

From (20) and (21)

((F pu2mr dr)2 — [@n | pu 2mr dr)(Ohm]3x)] ([ kr (8T 0x))/0x) . dr}

a =

{Z-n'rw _'f'(c/cm) pu 2nr

[ 7} Tupr (2h2x)/0hm/ox] — [r/(2hmf2x)) [ (2T/2x)/2x] } dr k). dr] }dr |
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The mean value of all temperature dependent properties is the value at temperature Tm.
Introducing dimensionless parameters and with p proportional to p/7T (22) gives

(} (URIT).dRE — {12 [ (URIT).dR}(Tn Re pom) (3hm3X)} { T R. [0k (8T/2X)j2X].dR}

a rw/km = 1

1 R
{)(C/Cm)(UR/T) ({IR[g ((UR|T).{(ch/e X)[(Chm[0 X )] —
2R\ T Re pim (8hm 2 X)) [¢k (3T/0X)/0 X ]) dR] /(kR/k,,.)} . dR) dR
(23)

It has been demonstrated by Knudsen and Katz [16] that a triple integral of the type in the denomina-
tor of (23) is equivalent to one of the type in the denominator of (24), below

Nu = 2arylkm
2 [j! (UR/T).dRPE (1 — {2 Jl‘ R . [ok (0Tj2X)/e X] . dR}/[Tm Re pm (Ohm/ox). jl' (UR/T) . dR))
0 0 0

{ 7 [ ] (cem) (URIT) 4R | UCURIT) @H1eX)/(@hn/2)) = (RITi Re o (o)
[k (2TJ2X)/0X1}. dR] / (kfkm) R . dR
e
Temperature profile
From (18) and (21)
Tw ~ T =2 {a (Tw - Tm) rw + ’J! R [ak (3T/8x)/6x] dr}/G) { ’f [ "([uP" (ahla)C)/(ahm/ax)]
0 0

r

— r [¢k (2T [ex)[ex}/(Ohm{ox)) dr] / kr} .dr
Whence (25)

a(Tw — Tm)ru+ | R.[9k(2T)2X)/2X]. dR
0

Tw—T = 1
{(URIT).dR
0

1 g {(URIT).[(3h/3.X)[(8hm[0X)] — (2R/Tm Re um) ([2k (2TI2X)/0X)/(2hm[2X))}.dR

% J B .dR (26)
R
In terms of the velocity parameter U, (24), becomes,
Nu =
1 1
UR 2 4 Rek (eT/2X)
2 (JTdR) [l - Re,um(ah,,,/aX)_[ 4 dR]
0 0

R R )3

¢ UR . ({UR ohjoX 4R ok (2TJ2X) [UR

,[ [ J on T 9R J(—f hmoX ~ Repm GhmoX) 03X J T ‘dR) dR/ (kfiem) RJ -dR
0 0 0

4]
@7
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and (26) becomes

@ ru (T — Tm) + [ R[6k (GT/EX)/2X].dR
T = 1 0
{(OR/T)dR
)

1 1
| (ORIT)dR. R [ok (¢T|6X)/EX]

R
x j (OR|T).|(ehje X)/(hm|e X )] — 4 > Re o GhmlEX) dR

R .dR.  (28)

Method of solution

A temperature profile is assumed for a particular mixed mean temperature and a particular wall
temperature. U is evaluated from (12), the value of u being appropriate to the temperature. Uy is
found from (11) and Re x F from (14). The Nusselt number may now be found from (27), with
values of enthalpy, specific heat and conductivity appropriate to the temperature. With this value of
Nusselt number a new temperature profile may be derived from (28). The cycle is repeated and
convergence usually occurs to solutions of sufficient accuracy after about four iterations.

Property values given in references [14] and [15] are for atmospheric pressure. The pressure de-
pendence of these has been neglected. Special aspects of solutions are discussed under the four
separate headings of numerical results and in the Appendix.

NUMERICAL RESULTS
(a) Uniform temperature gradient solutions
The condition is that (8T/éx) = constant, at all radii. The primary purpose of these solutions
is to reveal the temperature dependence of friction coefficient, Nusselt number and temperature and
velocity profiles. Gravitational forces and axial momentum and conduction changes are neglected.
With these conditions (12) becomes,

U=— JF'dR, (12a)
. I

(27) becomes

' j ? (c/em) . (OR/T)dR lj{' (UR/T) (¢/¢ém) dR
Nu=2 [j(; (UR/T) dR]2/0 { R .dR (27a)
and (28) becomes
— I(UR/T) (¢/ém) dR

y (ORIT)dR %

Um is found from (11) and Re F from (14).

For these conditions the pressure drop coefficient is equivalent to the conventional friction
coeflicient.

Re X F and Nu at different mixed mean temperatures, T'm, for wall temperatures, Ty, of 330,
700 and 1000°K are shown in Figs. 2 and 3. The isothermal values are 16 and 4-36 respectively.
Typical velocity and temperature profiles are shown in Figs. 4 and 5 for T,, = 350°K and different
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FiG. 2. Variation of pressure drop coefficient with
mixed mean air temperature, for different wall tem-
peratures.

a8

ar
——zconst,

ox

46 p——

N

N\

Nu

44/

/ v
ReTO0°K | 7,%1000°K

42

500 1000

Tm, *K

1500 2000

Fic. 3. Variation of Nusselt number with mixed mean
air temperature, for different wall temperatures.

20

ax .
\ T 2350°K

5 Uniform properties

s | T 2500°K
" 3|7, £1000°K
N 17, <1700°K
'8

5
174
0
L\
\
\
\
\!
\!
\
\!
K\
\
\
\
05
0 025 050 075 -0
R
FiG. 4. Velocity profiles for different mixed mean air
temperatures.

values of Tm. The isothermal parabolic velocity profile and the constant property temperature

profile are shown for comparison.

(b) Uniform enthalpy profile and uniform wall temperature solutions _
Gravitational forces and axial momentum and conduction changes again are neglected. U is

given by (12a), (27) becomes

Nu =

2{f (UR/T) dRP

0

| {i ((c/em) (UR/T)dR :} (ORIT) [(2h[0 X)/(8hm[8X)] - dR)[(kjkm)} - dR

(27b)
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and (28) becomes,
R -
aru(Tw — T) J‘j;(UR/T) [(ChloX)(chm/c X)].dR
H
[(ORT)dR % kR

0

Tu) e T = * dR (28b)

The enthalpy profile is first assumed unchanged with axial distance: i.e. (h/4,) at a particular
radius is independent of X. This yields (84/8 X)/(6hm/6X) = h{hm.

With this simplifying condition the iterative process evaluates the Nusselt number and velocity
and temperature profiles for given values of Ty and T. Solutions are obtained in this way for a
series of values of T, with a particular value of wall temperature, T.

Uniform wall temperature solutions are derived by evaluating from these temperature profiles
a second set of values of (¢h/0X)/(6hm/2X), without the uniform enthalpy profile restriction. This
yields a further set of values of the ratio and a rapid convergence occurs to the uniform wall tem-
perature solutions. The uniform enthalpy profile condition is thus a stage in the derivation of the
more practical uniform wall temperature solutions.

For all these conditions the pressure drop coefficient is equivalent to the conventional friction
coefficient. Re X F and Nu for different values of T, and with T, = 350°K are shown in Figs. 6
and 7 for the three conditions so far imposed. Values of Re x F are identical for both the uniform
enthalpy profile and the uniform wall temperature conditions. Velocity and temperature profiles
with Ty = 350°K and T = 1400°K for the cases of uniform temperature gradient and uniform
wall temperature are given in Figs. 8 and 9. The isothermal velocity profile is shown chain dotted in

T
|
— { ! g{;-const.
| 7, #350°K
5 ;
\ J
A
N
H \
H \\ 16
i \\ i l 7, =350
! \
L |
-Q 5 ;
|
% =1700°K ; | ,
F *1000°K 4 k L ‘
8 I, *500°K 14 -
ol or | |
Uniform properties - —=const i
'S X 1 |
x
v
o5 ] x 3
i 2. const.
[ = const
wt.;
|
| !
Q 0-2% 0-50 078 10 : 500 1000 1500 2000

7, *K

R e

Fic. 5. Temperature profiles for different mixed mean FiG. 6. Effect of boundary conditions on pressure drop
air temperatures. coefficient.
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FiG. 7. Effect of boundary conditions on Nusselt number.  FiG. 8. Velocity profiles for different boundary conditions.

Fig. 8 and the uniform property temperature profiles for the two cases are shown chain dotted in
Fig. 9.

(¢) Free convection effects
Solutions with the uniform wall temperature condition are presented for different values of
Gr/Re. Axial momentum and conduction changes are neglected. Equation (12) becomes

O=— 'f(R/y) R+ {Un T2 pmfl4 (T — Tu]} (Gr/Re) f {[:f (RIT)dRI/uR}.dR  (120)

Nu is given by (27b) and (T — T) by (28b).

In deriving solutions for given values of each of Tw, Tm and Gr/Re it is necessary first to assume a
value of Uy, in addition to the temperature profile. From (12c) a velocity profile is obtained and from
(11) a new value of Um. Nu and a new temperature profile are derived and with the new value of
Un and temperature profile the cycle of computation is repeated. A number of iterations produces
the final solutions. The uniform wall condition is approached via the uniform enthalpy profile
condition, as outlined in Section (b).

Re x Fis found from (14) and the values of this and of Nu are shown for different values of
Gr/Re with T, = 350°K and T = 1400°K in Fig. 10. The effect of free convection on the velocity
and temperature profiles is shown by the full lines in Figs. 11 and 12. Two profiles are shown, one
when no free convection is present, Gr/Re = 0, and the other with a contribution of free convection
indicated by Gr/Re = 40.



632
20 T 350°K
17,', =1400%
7. =const. (Uniform properties)
\\\ _~T. =const. (Variable properties)
_Q } ;
| S j !
s 7 Unif.
miorm
——=const. ;
gx cans (propemes)
a7 Variable
ax Cms"(properties)
|
8 0
o5
o 025 0-50 075 o
R
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(d) Axial conduction and momentum change effects

So far axial gradient terms involving du/oX
and o7/6 X have been neglected. These terms are
evaluated from the velocity and temperature
profiles and values of Nusselt number, derived
for the conditions of uniform wall temperature
with axial momentum and conduction changes
neglected. Equation (21), with no axial conduc-
tion, gives

X1 — Xo = (Reum/2)
% | [dhmINu km (T — Tw)]  (21d)

Tm = Tma
This yields the relationship between mixed
mean temperature, T, and axial distance, X.
Gradient terms are evaluated from finite dif-
ference expressions using the computer.
Consider the valuation of (i), (1/um) du/0 X and
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4.0
7, zconst.= 350°K
T =1400°K
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|
!
- l /
15 1 35
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= ; &_;
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30 10
7
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Gr/Re

Fic. 10. Effect of Grashof:Reynolds number ratio on
Nusselt number and pressure drop coefficient.

(i) (1/um) [én (2ujoX)/0X], which appear in
equation (12).

1l eu oU | gilﬁ_n

I;y—n _F;—X - W - Um 8X
U Unr2pm 6(Ginre pm)

3

=37t G zx o from ()
Rz o(1/pm)
=ax T Urn—5x

In laminar flow of high temperature gases the
change in density is predominantly due to changes
in temperature, changes in pressure being rela-
tively small. For gases obeying the perfect gas
equation of state

1 éu oU UdTnm
indX ~ X T Taox = ¢
1 eu(EweX) _ | tuund

, say (29)

Um cX T um X
_ p(@lpm) 1 OuTmd
= Pm 8X—_T;—6X —B ,53}’(30)-

¢ and B are found for each value of R.
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Fic. 11. Velocity profiles for different Reynolds and
Grashof numbers.
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In (12) the term in ¢ is more significant than that
in 8.

The terms in 2k (8T/8X)/2 X, 0h/d Xand eh/8 X
in equations (27) and (28) are evaluated without
difficulty.

In deriving the uniform wall temperature
solutions for a given value of each of T4, T and
Gr/Re a value of Up, must be first assumed along
with a temperature profile. Equation (12) gives a
velocity profile and (11) a new value of Un.
Equation (27) gives Nu and (28) gives a new

20

T, = const.x 350°K
T 1400°K

Gr/RexQ
\-Gr/Re=0,Re 1000

A
A

6///?'-4&\ Res1000

N\

0 025 0-50 0-78 0
R
FiG. 12. Temperature profiles for different Reynolds and
Grashof numbers,
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temperature profile. The cycle of computation
may be repeated if necessary.

With values of Nu obtained in this way it is
possible to re-determine the axial gradient terms
from (21). This was not necessary however for
the range of values of Re presented here.

Typical effects of axial momentum and con-
duction upon velocity and temperature profiles
are shown by the broken curves in Figs. 11 and
12, applicable to Re = 1000, T, = 350°K,
Ty = 1400°K and Gr/Re =0 and 40. With
Gr/Re = 0, Nu = 3-84, disregarding axial effects,
and Nu = 3-80 allowing for them, with Re = 1000.
Corresponding values of Re x F are 11-79 and
1-34. The axial momentum effect is more signi-
ficant than the conduction effect.

The effect of a variation in Reynolds number
is shown for some typical conditions in Table 1.
It will be seen that there is negligible change in
value of Nuand Re X F. There is little change in
the velocity and temperature profiles.

Table |. Effect of Reynolds number allowing for axial
conduction and momentum change

Tw = 350°K (const.), T = 600°K, Gr/Re = 0.

Re 1000 100 50
Nu 3-70 370 3-70
Re x F 604 6-02 598

For comparison it should be noted that if no
allowance is made for axial conduction and
momentum change and the analysis is of the
type described under heading (b), above, for
constant wall temperature, then the values of Nu
and Re X F for the temperatures of Table | are
3-67 and 13-46 respectively. For this analysis
pressure change is due to viscosity alone and
F=f

The dependence of Nu and Re x F upon
Gr/Re with Re = 50 is shown in Fig. 13.

DISCUSSION
The results show that over a wide range of
temperature in which the properties of air vary
considerably the value of the Nusselt number,
evaluated with a conductivity equal to that at
the mixed mean temperature, is surprisingly
steady. For the conditions presented in Fig. 7
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FiG. 13. Effect of Grashof:Reynolds number ratio on
Nusselt number and pressure drop coefficient, with
allowance for axial conduction and momentum change.

the maximum variation in the value of Nu for
the uniform temperature gradient and the uni-
form wall temperature conditions is 5-7 per cent
of the lowest, constant property, value. It is
demonstrated also how the different imposed
conditions give different solutions. Experimental
support for the constancy of the value of Nu at
the lower temperature ratios, Tp/Ty, for the
uniform wall temperature condition is given by
Kays and Nicoll [17]. These workers investigated
the cooling of air for comparable wall tempera-
ture and for temperature ratios up to 1:79 and
found negligible change in Nu. It is also of
interest that for air heating the values of local
Nusselt numbers along the entry length are close
to those predicted by constant property analysis
and this state of affairs probably extends to air
cooling.

Nusselt numbers for the uniform temperature
gradient condition, presented in Fig. 3, are
shown in Fig. 14 as a function of T, and
temperature ratio. Deissler [6] expressed Nu as a
function of this ratio and the relationship is
shown by the broken curve. The maximum value
of temperature ratio given by Deissler is 1-67 and
the present analysis reveals that at higher values
of this ratio the value of Nu decreases.
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FiG. 14. Variation of Nusselt number with temperature
ratio at different wall temperatures.

The uniformity in the value of Nu does not
extend to the velocity and temperature profiles,
where there are significant deviations from the
constant property profiles. In Fig. 6 the product of
Reynolds number and pressure drop coefficient
shows a marked variation with temperature, but
is not so dependent upon the imposed boundary
condition. Figure 15 shows Re x F for the
uniform temperature gradient condition as a
function of temperature ratio. It should be noted

®
ﬂ sconst]
dx
s
T, #1000°K
e
14 !
W \ T,:700°K
s &
d X
[s350°K
12
~—
s 20 30 20 50

F1G. 15. Variation of friction coefficient with tempera-
ture ratio at different wall temperatures.
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that in the results shown in Figs. 6 and 15 the
pressure drop coefficient, F, is the same as the
friction coefficient, f. The values correlate well,
with little dependence upon wall temperature.
Values calculated from Deissler’s results lie
close to the Ty = 350° curve up to temperature
ratios of 1-67.

The axial momentum change arising from the
decreasing velocity of the cooling gas has im-
portant effects. Although a decrease in Re
creates a greater rate of decrease of velocity with
distance the decrease in mass rate of flow results
in the momentum change being unaltered. Thus
the effect of axial velocity gradients is almost
independent of the actual value of Re. The axial
momentum change gives rise to a force opposing
motion, a change in velocity profile and a de-
crease in the value of Re X F. Because of the
more rapid cooling at larger temperature dif-
ferences these effects are more marked at higher
temperature ratios. The changes in temperature
profile and in the value of Nu are not as striking.

At very low Reynolds numbers with large
temperature differences the neglect of radial
velocity in the analysis becomes less justifiable.
It is of interest to note that the reduction in the
value of Re X F, as a result of the allowance for
axial gradients, is not due to a breakdown in the
assumed model, for the reduction occurs with a
value of Re = 1000 when the neglect of radial
velocity is justifiable. For low values of Reynolds
number and large temperature differences there
is a need to carry out a fuller analysis to ascertain
the effects of radial velocity.

Allowance for axial conduction in the theory
presented here does not produce very different
results in the laminar range down to Re = 50.
This is not to say that axial conduction may be
neglected. For consider a cross section of the
tube at right angles to the flow and another cross
section, paralle! and a very small distance away.
The energy transfer by axial conduction into
the thin disc formed by these sections ranges
from 0-005 per cent of the total net energy trans-
fer for Re = 1000 to 2-07 per cent at Re = 50,
with Ty = 350°K and Tm = 600°K. The axial
conduction as a percentage of the total net
energy transfer at different Reynolds numbers is
shown in Fig. 16. In the experimental determina-
tion of Nu allowance for axial conduction
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F1c. 16. Axial conduction as a proportion of net energy
transfer at different Reynolds numbers.

becomes more important as Re is reduced. This
is in line with the findings of Petukhov and co-
workers [13], [18], who found allowance for
axial conduction important in experimental
work on liquid metals at Peclet numbers less
than 160. This corresponds to Re < 240 for air
at 600°K. Singh [12] found axial conduction to
be of importance for Peclet numbers less than
100.

The decrease of Nu associated with an increase
in the free convection effect, indicated by an
increase in the value of Gr/Re, is in accord with
the constant property solutions of Hanratty and
co-workers [10]. Allowance for gravitational
force increase the pressure drop and the product
Re X F increases with Gr/Re, at constant
Reynolds number. The pressure drop is depen-
dent upon a complex of factors involving the
viscous stress at the wall, the gravitational force
and the momentum change. These interact and
the use of a pressure drop coefficient seems
more appropriate than a summation of sup-
posedly separate influences.

Free convection does not have a significant
effect upon the temperature profile but the effect
observed on the velocity profile is of a funda-
mental interest. The denser gas close to the wall
is retarded and the velocity profile deformed, as
shown in Fig. 11. Ultimately a reversal of flow
occurs close to the wall. In experimental studies
using dye in water Scheele, Rosen and Hanratty
[11] showed that a symmetrical downward flow
at the wall develops. A further small increase
in Gr/Re creates an asymmetric condition and
there follows a sudden transition to eddying flow.
This transition to turbulence, occurring at a
laminar flow Reynolds number, enhances the
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heat transfer. Scheele and Hanratty {19] in-
troduce a dimensionless parameter, which can be
shown equal to Nu Gr/8 Re, as a measure of the
free convection effect. Their theoretical analysis
for the conditions of uniform properties and
uniform heat flux shows zero velocity gradient
to be attained at the wall when Nu Gr/8 Re = 52-2.
Experiments with water show a transition to
unsteady motion at Nu Gr/8 Re = 59. Taking the
appropriate value of Nu from reference [10],
the critical value of Gr/Re for zero velocity
gradient at the wall is I 14. The analysis presented
in the present paper gives zero velocity gradient
when Gr/Re = 72, with T, = 600°K, T,
= 350°K and Re = 50 and the profile is shown
in Fig. 17. Because of the onset of unsteady
motion the results of the analysis with Gr/Re > 72
are not of practical value.

In seeking an explanation for the difference
in the critical value of Gr/Re obtained by the
two analyses, an examination of the velocity
profiles in Fig. 8 reveals that the two different
boundary conditions produce the same velocity
gradient near the wall. A comparison of this
with the uniform property gradient shown in the

30
T, =const. =350°K
T =600°K

-\ Re =50
25 N ]
_Gr/Re=72
20—
v T
Gr/Re =0~

O

o 028 050 078 0

R
Fig. 17. Velocity profiles (i) neglecting gravitational
force; and (ii) at critical value of Gr/Re.

same figure shows that property variation is a
factor which runs counter to flow reversal
Figure 11 reveals that the axial momentum
change increases the tendency to flow reversal
due to free convection.

CONCLUSIONS

1. With a value of conductivity appropriate
to the mixed mean temperature there is less
than 6 per cent variation in Nusselt
number over a wide range of temperature
ratios.

2. There is a greater variation with tempera-
ture in the value of the product of the
Reynolds number and pressure drop co-
efficient. There is good correlation of this
product with temperature ratio, with little
dependence upon wall temperature, as
shown in Fig. 15.

3. Variation of physical properties causes
considerable deviation from the uniform
property velocity and temperature profiles.

4. Axial momentum change is important,
particularly at higher temperature ratios.
The effect, which is almost independent of
the value of Reynolds number, is to
decrease the value of the pressure drop
coefficient. At low Reynolds numbers with
high temperature ratios there is a need for
fuller analysis in which allowance is made
for radial velocity.

5. Axial conduction becomes of increasing
importance as the Reynolds number is
reduced below 200.

6. Free convection causes appreciable in-
crease in the value of the pressure drop
coefficient.

7. Reversal of flow near the wall occurs at
lower values of Gr/Re than in the uniform
property solution.
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APPENDIX I
The use of Simpson’s rule in the computer
programme

The necessary integrations with respect to
radius were carried out by the use of Simpson’s
rule. A check on errors due to the use of incre-
ments of radius which were too large was ob-
tained from the velocity and temperature profiles.
The mixed mean temperature was derived from
these and the value compared with the original
“imposed” value. Discrepancies not disappear-
ing on further iteration were remedied by the
use of smaller increments of radius.

Evaluations at the following radii were found
to give satisfactory accuracy: R from 0 by
increments of 0-05 to 09, 0925, 0-95, 0:9625,
0-975, 0-9875, 1-000. The smaller increments
close to the wall were necessary because of the
steeper gradients.

Résumé—Leffet de la variation de la chaleur spécifique, de la densité, de la viscosité et de la con-
ductivité thermique avec la température, est recherché théoriquement pour un écoulement d'air
réfrigérant développé dans un tube circulaire. Des solutions numériques sont présentées qui ont été
obtenues & 1'aide d'un calculateur numérique et dans une gamme de températures de 350 a 2500°K.

Les équations de quantité de mouvement et de [’énergie sont considérées et les solutions numériques
des profils de température et de vitesse, le nombre de Nusselt et le coefficient de chute de pression sont
donnés pour différentes températures moyennes.

Des solutions sont présentées pour les conditions de: 1 —Tous les gradients axiaux de température
a rayon fixé égaux au gradient de température globale. 2—Température pariétale constante.

En plus de montrer les effets de la variation des propriétés, les solutions montrent aussi que I'effet
de la conduction axiale devient important aux faibles nombres de Reynolds et que I'effet du changement
de la quantité de mouvement axiale peut étre considérable pour de grandes différences de température
entre 1'air et la paroi. Pour un écoulement vertical ascendant, 'effet de la force de gravitation est
étudi¢ et la solution numérique indique un renversement de I’écoulement prés de la paroi A une valeur

plus faible de Gr/Re que dans la solution avec propriétés uniformes.

Zusammenfassung—Der Einfluss der Anderung der spezifischen Wirmekapazitit der Dichte, der
Zihigkeit und der Wirmeleitfahigkeit mit der Temperatur wird theoretisch fiir einen ausgebildeten
Luftstrom, der in einem Rohr mit Kreisquerschnitt kiihlt, untersucht. Es werden numerische Lsungen

H.M.—-28



6

D. BRADLEY and A. G. ENTWISTLE

angegeben, die mit einem Digitalrechner erzielt wurden und fiir einen Bereich der Lufttemperaturen
von 350 bis 2500°K gelten. Die Impuls- und Energiegleichungen werden beriicksichtigt und fiir unter-
schiedliche mittlere Temperaturen werden numerische Losungen der Temperatur- und Geschwindig-
keitsprofile, Nusseltzahl und Druckabfallbeiwert angegeben.

Es werden Losungen aufgefiihrt fiir die Bedingungen, dass:

1. alle axialen Temperaturgradienten bei einem bestimmten Radius dem Gradienten der Mischtem-
peratur gleich sind
2. konstante Wandtemperatur vorliegt.

Zusitzlich zum gezeigten Einfluss der Stoffwertevariation ergeben die Losungen auch, dass der
Einfluss der axialen Leitung bei niedrigen Reynoldszahlen an Bedeutung gewinnt und dass bei grossen
Temperaturunterschieden zwischen Luft und Wand der Einfluss der Axialimpulsinderung betrichtlich
sein kann. Fiir senkrechte Aufwartsstrdmung wird der Einfluss der Schwerkraft untersucht und die
numerische Lésung zeigt einen Umkehrstrom in Wandnihe bei niedrigeren Werten von Gr/Re als es

bei der einheitlichen Losung fiir die Stoffeigenschaften der Fall ist.

AnHoTanRA~—TeopeTHHeCKII JICCAeTYeTCA BIMAHHE I3MEHEHHA TeILTO8MKOCTH, IIOTHOCTI,
BA3KOCTIL Il TENIONPOBOIHOCTI C TEMIIEPATYPON MNP OXJAMFEHII PA3BUTOTO MOTOKA BO3-
nyxa B Kpyraoit Tpyde. [IpuBegeHH YMCICHHBE Pe3YJABTATHL IIf THANA30HA TEMIEPATYp
Bo3ayxa ot 350 10 2500°K, noayuenusle Ha LUPPOBOIT BHIYHCIUTEILHON MAIITHE,

PaccyMoTpenst ypaBHEHIA KOINYECTBA IBIIAKEHHA H JHEPTHU U MPHBETEHB! YIICTEHHbE Pe3-
YABTATH JIA npodiriell TeMmmepaTypHL M CROPOCTH, kpuTepuit Hycceasra 1t wosdduuient
nepenaja AaBIeHIA AIA PAsIHYHBIX CMELIAHHEX CPeTHIIX TeMIepaTyp.

Pemtenita npeacTaBaeHsl LIA CIeJYMOLIMX yCIOBII :

1. Bce akcuaIbHBle FPAJHEHTHl TeMIEPATYPHl NMPH (GHKCHPOBAHHOM paliyce DABHH
IPaTHEHTy cpeIHeoOBEMHOM TeMTepaTy pH.
2. TlocTosHHAA TeMIIEPaTYPA CTEHKH.

ITosuMO TOrO, YTO PEIUeHIIA YKA3HBAIT HA BIHAHIE H3MEHEHHA CBOIICTB, OHIL TaKHe MoKa3-
BIBAIOT, WTO BIIIAHHE HPOJOJIbHON TENIOMPOBOTHOCTH CTAHOBHTCA BAXHBIM INPH MABIX
3HAYeHUAX KpUTepIA PeltHoIs1ca, a BIHAHIE AKCHATBLHOTO H3MEHEHHA KOJIIYeCTRA ABIHeHHSA
MOeT OHITh 3HAYHTEJBbHBIM IPH GOIBIION PASHOCTIH TEMIIEPATYD MerwIy BO3AYXOM M CTeHKOM.

HayuaercA BINAHIE TPABUTALHOHHON CIIH AJA MOTOKA, HAMPABIEHHOrO BEPTHKATIBHO
BBepX. UiC.IeHHOE pellleHile YKa3bLIBAeT HA NepeMeHy HANPaBJIeHHA MOTOKA ¥ CTEHKIl Tpi

MeHbUIeM 3HAYEeHHH BeTHYHHEL Gr/Re, 4eM B pelIeHUM ¢ OTHOPOTHBIMII cBO{CTRAMIL.



