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Abstract-The effect of the variation of specific heat, density, viscosity and thermal conductivity with 
temperature, is investigated theoretically for developed air flow cooling in a circular tube. Numerical 
solutions are presented which were obtained using a digital computer and are for a range of air 
temperatures from 350 to 2500’K. 

The momentum and energy equations are considered and numerical solutions of temperature and 
velocity profiles, Nusselt number and pressure drop coefficient are given for different mixed mean 
temperatures. 

Solutions are presented for the conditions of: 

I. All axial temperature gradients at fixed radius equal to the bulk temperature gradient. 
2. Constant wall temperature. 

In addition to showing the effects of property variation, the solutions show also that the effect of 
axial conduction becomes important at low Reynolds number and that the effect of axial momentum 
change can be considerable for large temperature differences between air and wall. For vertically 
uoward flow the effect of eravitational force is studied and numerical solution indicates a flow reversal 
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near the wall it a lower value of Gr/Re than in the uniform property solution. 

NOMENCLATURE 

mean specific heat at constant pressure 
between T, and T; 
mean specific heat at constant pressure 
between T, and Tm; 
specific heat at constant pressure at 
temperature T; 
friction coefficient; 
pressure drop coefficient, defined by 
(13); 
acceleration due to gravity; 
mass rate of flow through tube; 

8 r”, P; g(Tm - Tw) 
Grashof number = _ n . 

lmCL$ ’ 

r, radius ; 
rwr tube radius; 

R, 

Re, 

dimensionless radius = CO ; 

Reynolds number = 
2umrwpm. 

Pm ’ 

T, 
T rn, 

absolute temperature at radius r; 

mixed mean temperature (abs.) or bulk 
temperature; 

T WI 

11, 
Urn, 

wall temperature (abs.); 
velocity at radius r; 

mean velocity defined by (4); 

for a perfect gas ; 
enthalpylunit mass, measured above 
wall temperature, at radius r; 

thermal conductivity at radius r; 
2 arw 

u, 

ii, 

x, 
x, 

dimensionless velocity = Frn ; 

velocity parameter defined by (9); 
axial distance along tube; 
dimensionless axial distance = x/rw. 

Nusselt number = -k ; 
m Greek symbols 

pressure ; a, heat-transfer coefficient ; 
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6 dimensionless temperature = : w-T; . 
m w’ 

I4 viscosity at radius r; 
P, density at radius r. 

Subscripts 
m, mean condition. Properties evaluated at 

mixed mean temperature, T,,,; 
w, condition at tube wall. 

IKTRODUCTIOX 

the dimensionless velocity and temperature 
profiles are unchanging with axial distance. 
This is the situation at distances beyond the 
“entry length” and is called the region of fully 
developed flow. 

THE laminar flow of a fluid with heat transfer in 
a circular tube has been analysed by many 
workers. The basic differential equation for 
conservation of energy for such flow, the 
Fourier-Poisson equation, was first correctly 
derived by Poisson [l] in 1835. Solutions of the 
equation obtained by Graetz in 1883-1885 are 
summarized by Drew [2]. The first solution of 
Graetz was for an axial velocity unchanging 
with radius and the second, more practical, 
solution was for a parabolic velocity profile with 
respect to radius, as given by Poiseuille’s equa- 
tion. Both solutions were for uniform wall tem- 
perature. Graetz obtained a temperature profile 
and a heat-transfer coefficient in the form of 
infinite series of which the first three terms were 
evaluated. In 1956 Sellars, Tribus and Klein [3] 
gave a formula for calculating all the eigenvalues 
and eigenfunctions, not only for the condition 
of uniform wall temperature, but also of uniform 
wall heat flux and of linear wall temperature. 

Experiments revealed departures from the 
Graetz analysis and Colburn [4] ascribed these 
to viscosity variation with temperature, causing 
in developed flow a deviation from Poiseuille’s 
parabolic velocity profile, and also, at lolver 
Reynolds numbers, to natural convection. Bv 
introducing a viscosity ratio and the Grashif 
number into non-dimensional relationships the 
experimental results could be empirically cor- 
related. The same phenomena also explained 
departures of the fluid friction factor from the 
isothermal value. 

Attempts have been made to explain the 
deviations from “isothermal” solutions by 
theoretical analysis using the momentum and 
energy equations. Early work allowed separately 
for viscosity variations and for density varia- 
tions. Pigford [5] summarizes these attempts and 
gives solutions allowing both for variation in 
viscosity and for variation in density in the 
gravitational field. His analysis is for high tlow 
rates in short vertical tubes with uniform ~vall 
temperature. 

All these solutions give the “thermal boundary 
layer” development in the axial direction. The 
analyses share the following assumptions : 

1. 

2. 

3. 

4. 

:: 

Fluid specific heat, conductivity, viscosity 
and density independent of temperature. 
Effects of gravitational force and varying 
density (free convection) neglected. 
Axial conduction and momentum change 
negIected. 
Energy dissipation due to viscosity neg- 
lected. 

Deissler [6] has allowed for variations of 
viscosity, density and thermal conductivity nith 
temperature in fully developed flow. He deri\-es 
theoretical velocity and temperature profiles, 
friction parameters and Nusselt numbers for 
gases and liquid metals at different ratios of bulk 
temperature to wall temperature. The \vall 
boundary condition is that of constant tempera- 
ture difference between fluid at a given radius 
and wall, irrespective of axial distance. For 
constant property values this is the uniform heat 
flux condition. Diessler makes assumptions (2). 
(3), (4), (5), and (6) listed above and also that 
the specific heat is constant. 

No radial component of velocity. 
Symmetry about tube axis. 

It should be noted that the concept of developed 
flow is somewhat altered as a consequence of 
property variations. The velocity and tempera- 
ture profiles continue to change even after the 
complete development of the two boundary 
layers. Developed flow under these conditions is 
taken to mean the state of affairs where both 
boundary layers, which begin to build up at the 

Analysis of the problem is simplified in the 
region where the velocity and thermal boundary 
layers have become fully developed, where there 
is no radial component of velocity and where 



DEVELOPED LAMINAR FLOW HEAT TRANSFER 623 

walls at entry to the tube, have extended across 
the full diameter, notwithstanding some con- 
tinuing change in the profiles. It is no longer 
strictly true to equate the radial velocity com- 
ponent to zero. However, because this velocity 
is usually small compared with the axial com- 
ponent there is, in such cases, no great error in 
analyses based on developed flow, with no 
radial velocity. Hallman [7] presents some experi- 
mental evidence which supports the local use of 
the results of heat-transfer analyses on the basis 
of such a fully developed flow model. 

Free convection effects have been investigated 
theoretically by Ostroumov 181, Hallman [9] and 
Hanratty, Rosen and Kabel [IO]. These investi- 
gators solve the momentum and energy equa- 
tions allowing for density variation in the gravi- 
tational field, simplification being achieved by 
analysing the uniform heat flux condition with 
developed flow. All fluid properties except the 
density are assumed constant and any radial 
component of velocity is neglected. The analyses 
demonstrate the distortion of velocity and tem- 
perature profiles due to free convection. Scheele, 
Rosen and Hanratty [11] carried out experi- 
mental studies of the transition to disturbed flow 
in vertical tubes and Hallman [7] obtained ex- 
perimental values of Nusselt numbers and also 
noted the development of instabilities. 

The mathematical investigation of Singh [12] 
extends the Graetz, uniform wall temperature, 
solution for Poiseuille flow by allowing for the 
effect of axial heat conduction, as well as energy 
dissipation due to viscosity and internal heat 
generation. Singh found that for constant proper- 
ties the effect of axial conduction was almost 
negligible for Peclet numbers greater than 100. 
The range of Peclet numbers from 1 to 100 for 
uniform heat flux and constant property values 
has been analysed numerically by Petukhov and 
Tsvetkov [ 131. 

Despite extensive investigations of laminar 
flow heat transfer in circular tubes, it is seen 
that recourse always has been made to some of 
the assumptions (l-6) listed previously. The 
present authors’ interest in the problem arises 
from studies on hot freshly burnt gases flowing 
at low Reynolds numbers in cooled, uniform 
temperature, tubes. Under these conditions, the 
variation of fluid properties with temperature 

clearly is significant, as is free convection and, 
possibly, also axial conduction and change of 
momentum. It was therefore necessary to carry 
out the present analyses for this combination of 
circumstances. Information on the properties 
of gases is not, in general, available throughout 
the temperature range of interest. Data on the 
properties of air, however, are available in the 
range 250 to 2500°K and it was decided to 
use these data in the analysis as this would pro- 
vide a guide to the behaviour of other hot gases. 
The property values used are those listed by 
Eckert and Drake [14] and shown graphically in 

to1 ’ I I I 
500 1000 1500 2000 2500 

T, OK 

FIG. 1. Conductivity, viscosity and specific heat of air as 
functions of temperature at atmospheric pressure. 

Fig. 1, supplemented by values of enthalpy 
taken from Hilsenrath [15]. 

A complete solution of the problem is a matter 
of great complexity even with the aid of digital 
computers and has not, as yet, been accom- 
plished. The neglect of any radial component of 
velocity introduces considerable mathematical 
simplification and is the most restrictive assump- 
tion which has been made in deriving the results 
presented by the present authors. These are 
presented not as complete solutions but as a 
contribution towards a fuller understanding of 
the problem. Velocity and temperature profiles, 
Nusselt numbers and pressure drop coefficients 
have been evaluated numerically for a range of 
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conditions in developed flow using the Ferranti 
Pegasus computer at Leeds University. 

The different influences are shown by the pre- 
sentation of solutions under four headings: 

a. Uniform temperature gradient solutions. 
b. Uniform enthalpy profile, and uniform wall 

temperature solutions. 
c. Free convection effects. 
d. Axial conduction and momentum change 

effects. 

AIALYSIS 

The essentials of the analysis are the derivation 
of the velocity profile from the momentum 
equation and of the temperature profile from the 
energy equation. These profiles are then able to 
yield the pressure drop coefficient and the 
Nusselt number. 

Assumptions 
It is assumed that flow is steady, axisymmetric, 

and that the energy dissipation due to viscosity 

may be neglected. The equation of the state of 
the fluid is that of a perfect gas with p propor- 
tional to p,fT. 

It is further assumed that the flow is fully 
developed with no radial component of velocity. 
Usually this velocity would be very much smaller 
than the axial velocity and this assumption is 
justified, but this is not so at very low flow rates. 

The numerical results which are presented are 
derived from the momentum and energy equa- 
tions without recourse to the continuity equation 
Gtrp,‘~,~ = 0. It is found that, having obtained 
the velocity and temperature profiles, this last 
equation is not fully satisfied. The reason for 
this inconsistency lies in the neglect of any radial 
velocity. Allowance for this would produce 
somewhat more accurate solutions but at the 
expense of a considerable increase in mathema- 
tical complexity. The continuity equation does 
not imply that the axial momentum change on 
the left-hand side of the momentum equation (l), 
below, is necessarily negligible. 

Momentum equation 
The cases of vertically upward flow with cooling of the gas is analysed. The Navier-Stokes 

equation, allowing for axial changes of momentum and for gravitational force opposing niotion, 
is given in polar coordinates by 

a24 
PUa,u = 

_pp_g(~)+~(~~)+f~(~~/~~)), (1) 

(ap/lk) = 0 and boundary conditions are; 

r = 0 (&4/h) = 0 (2) 

r=rw u=O (3) 

Define a mean velocity of flow given by 

urn = (G/nri pm) (4) 
and a Reynolds number 

Re=2umrwpm 2G =- 
Pm pm~rw 

R+m is constant along the tube length. 
AS (Gr/Re) = 2 rw g (Tm - T& u”, Tm (1) gives 

(3 

g(g) = - [($) (2(T,TI1 Tw))] - [(s) (%)I ’ 

[(3 ;mp;Pm); (a,c;/x’)] + [drncp R) (” RF;‘2R))]. (6) 
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Integrating with respect to R between the limits R = 0 and R = R and using (2) in the dimen- 
sionless form gives, 

Integrating again with respect to R between the limits R = 1 and R = R and using (3) in the 
dimensionless form gives, 

uz Pmg zPr?k J I[ RR 
-*dR f 

T,prn 
R 4 (R/T). dR 

Gr ,, 
-- -- 
pm Re aX IJ 4(Tm - Tw)Re s /AR I 

.dR + 

1 I 

[ J 
Re em T R i (URITum) (Wax). dR 

m 0 
4 R 7 (R/urn). [ap (au/aX)/aXl . dR 

’ -- - 
2 PR 1 J 

*dR -3 
PR 

*dR (8) 

I I 

In the derivation of numerical solutions it is convenient to introduce a parameter 

and 
0 = - [2u/(ap/ax) r; g] 

Clearly 
0, = - [2 Um/(ap/aX) r: g]. 

From (4) and (9) 

Um= [(-2rS2nrupd~)/(nl:pm~r:p)l =2TmiF*dR. 

0 0 

(9) 

(10) 

(11) 

In terms of the parameter ii, (8) becomes 

R 

R UrnTzprn 
+R/T).dR 

Gr o 
*=- G*dR$-4(Tm-Tw)‘re J J pR 

.dR$ 

1 1 

dR. (12) 

Pressure drop coeficient, F 
This defines the pressure drop in the most general case, when allowance is made for viscosity, 

free convection and axial momentum change. In analyses where free convection and axial momentum 
change are neglected and where the pressure change is due to viscosity alone, then F is the same as 
the more widely used friction coefficient, f. This is true in the solutions presented under headings 
(a) and (b) below. 
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Let 
aP -_= Fpmu; 
2X rt0g 

(13) 

Equations (5), (IO) and (13) give 

4 
F= 

urn Rep,,, 

Energy equation 
This is 

Boundary conditions are 

akr (aT/ar) + r ak (aTlax) ah 
Zr ax =U Pra; 

r=O aT 0 
7r = 

r = rw T= Tw 

Integrating (15) twice with respect to r, between the limits shown, gives 

(14) 

(19 

(16) 

(17) 

I 

s( ah 
I” 

ak (aww dr 

s 

u prax -‘-ax 1 
Tw-T= ’ 

kr- 
dr (18) 

Let enthalpies be measured above a datum temperature equal to Tw. The mixed mean tempera- 
ture, Tm, is defined by 

y (c/c,,,) pu 2 nr (T - TU) . dr 
Tm - Tw = ’ 

G 
(19) 

Substituting (18) in (19) gives 

r. t 

J I CU P r w+w - r [ak (aT/ax)/ax]> dr 
O 

dr 

, kr i 
* dr 

(20) 
G 

Consideration of the boundary conditions and introduction of the heat-transfer coefficient yields: 

a(T, - Tm)2rrrw+ 2?r 
‘- akr wm . dr = G Eh,, J ax ax 
0 

(21) 

From (20) and (21) 

{l[ pu 2rrr dr>2 - [(2x 7 pi 2?rr dr)/(ah,/ax)] ([Tkr (aT/ax)]/ax) . dr) 
0 0 

a=- 

2nr, r(+m) PU 2rr r( i {[upr (ah/ax)/ahm/ax] - [r/(ahm/ax)] [ak (aT/ax)/a-yl } drlkr) . dr dr 
0 (I 0 I> * 

(22) 
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The mean value of all temperature dependent properties is the value at temperature T,. 
Introducing dimensionless parameters and with p proportional to p/T (22) gives 

[J! (UR/T) . dR12 - {[2 j! (UR/T) . dR]:‘(T, Re pm) (%JaX)> {i’ R . [ak (Z’/~X)/aXl. dR} 

a r,,,k, = ,” II 0 

r, (c/cm) WRIT) 
(i 

i [$ (CUR/T). K’WJWW~ WI - 

2R,[T,,, Rep,,, (ah,,aX)] [c?k (aT/aX>/aX]) dR],(kR,km) . dR 
1 1 

dR 

(23) 

It has been demonstrated by Knudsen and Katz [16] that a triple integral of the type in the denomina- 
tor of (23) is equivalent to one of the type in the denominator of (24), below 

Nu = 2ar,,km 

2 [I (UR/T).dRP (I - (2 1 R . [ak (aT,ax),ZX] . dR}/[T, Repm (%,@x). $ (URIT) . dR]) 
= .- -- 

‘y (c/cm) (UR,T) dR i {[(UR,T) (ah,ax),(ah,,ax)] - [2R/Trn Re pm (ah,,ax)] _- 

[Sk(aT/aX)/aX]).dR 
II 

(k/k,,,) Rj.dR 

’ (24) 

Temperature profire 
From (18) and (21) 

7-w - T= 2rr({a(Tw - T,) rw + p R [ak (aT,w,ax] . dr)/G) { 7 [ R (Ew miwiwbmi 

- r [Zk (aT,ax)/ax]/(ah,/ax)) dr 
II > 

kr . dr 

Whence (25) 

a(Tw - Tnr) ru, + i R . [ak (aT,ax),ax] . dR 

Tw - T= 

[ 

0 

i (UR/T) . dR 
0 1 

R 1 d wvn . ww~imdwi - m/T, Re pm) (w wxww/(ahm/~x)) 1. dR x J kR 
. dR (26) 

R 

In terms of the velocity parameter 0, (24), becomes, 

Nu = 

2 ( j$dR)' [I - Rep,(;h,,ax)jRak;;‘ax)dR] 

j,~~~dR~~~~x-Re~.~~~,ax~.ak~~x).~~.dRjdR/~k,k~)R].dR 

0 0 0 0 

(27) 
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and (26) becomes 

a rro (rw - r,) f ; R [2k (6T/EX),!fX]. dR 

T,, - T = 
0 

i (OR/T) dR 

I R 

IJI 

I 

j (iiR,/T) dR. R [Ek (ET/‘SX),‘EX] 

X (~R/T).[(ahi’2X)/(Eh,&‘)]-4 ” 
0 Re pm (2h,/Z X) 

dR 
- 

kR 
. dR. (2s) 

R 

Method of solution 
A temperature profile is assumed for a particular mixed mean temperature and a particular wall 

temperature. 0 is evaluated from (12), the value of p being appropriate to the temperature. 0, is 
found from (11) and Re x F from (14). The Nusselt number may now be found from (27), with 
values of enthalpy, specific heat and conductivity appropriate to the temperature. With this value of 
Nusselt number a new temperature profile may be derived from (28). The cycle is repeated and 
convergence usually occurs to solutions of sufficient accuracy after about four iterations. 

Property values given in references [14] and [15] are for atmospheric pressure. The pressure de- 
pendence of these has been neglected. Special aspects of solutions are discussed under the four 
separate headings of numerical results and in the Appendix. 

NUMERICAL RESULTS 

(a) Uniform temperature gradient solutions 
The condition is that (aT/S.u) = constant, at all radii. The primary purpose of these solutions 

is to reveal the temperature dependence of friction coefficient, Nusselt number and temperature and 
velocity profiles. Gravitational forces and axial momentum and conduction changes are neglected. 
With these conditions (12) becomes, 

(lla) 

(27) becomes 

’ 

NM = 2 [j @R/T) dRl’2 

f (c/cm). (OR/T) dR 1 (OR/T) (C/C,) dR 

R (k/L) I 
. dR (27a) 

0 

and (28) becomes 

T,-T= 
a rw (T, - Tm) 

’ 7 (OR/T) (C/C,) dR 

J ,, i (OR/T) dR R 
kR 

. dR (28a) 

0 

8, is found from (11) and Re F from (14). 
For these conditions the pressure drop coefficient is equivalent to the conventional friction 

coefficient. 
Re x F and NM at different mixed mean temperatures, T,,,, for wall temperatures, T,, of 350, 

700 and IOOO’K are shown in Figs. 2 and 3. The isothermal values are 16 and 4.36 respectively. 
Typical velocity and temperature profiles are shown in Figs. 4 and 5 for T,, = 350°K and different 
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FIG. 2. Variation of pres”s;re drop coefficient with 
mixed mean air temperature, for different wall tem- 

peratures. 
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FIG. 3. Variation of Nusselt number with mixed mean FIG. 4. Velocity profiles for different mixed mean air 
air temperature, for different wall temperatures. temperatures. 

values of Tm. The isothermal parabolic velocity profile and the constant property temperature 
profile are shown for comparison. 

(6) Uniform enthalpy profile and uniform wall temperature solutions 
Gravitational forces and axial momentum and conduction changes again are neglected. 0 is 

given by (12a), (27) becomes 

Nu = 1 
2 [a (OR/Z-) dR12 

J (S ((c/cm) (iSIR/T) dR 7 (~R/T) [(W~X)/(%n/~X)l * dR)/(Wn)I . dR 
(27b) 

0 0 0 
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and (28) becomes, 

a rw (Ttc - Tw) 
’ 4 (iiR,;T) [(eh,laA’),i(i;lr,,?X)] . dR 

T!,: - T = , 
s 

,) 
kR 

__ . dR 
L (OR/T) dR R 

(2Sb) 

The enthalpy profile is first assumed unchanged with axial distance: i.e. @,‘A,) at a particular 
radius is independent of X. This yields (?%/aX)/(%,/aX) = h/h,+ 

With this simplifying condition the iterative process evaluates the Nusselt number and velocity 
and temperature profiles for given values of Tw and I,,,. Solutions are obtained in this way for a 
series of values of T,,, with a particular value of wall temperature, T,,. 

Uniform wall temperature solutions are derived by evaluating from these temperature profiles 
a second set of values of (2h/~A’),‘(8h,/~X), without the uniform enthalpy profile restriction, This 
yields a further set of values of the ratio and a rapid convergence occurs to the uniform wall tem- 
perature solutions. The uniform enthalpy profile condition is thus a stage in the derivation of the 
more practical uniform wall temperature solutions. 

For all these conditions the pressure drop coefficient is equivalent to the conventional friction 
coefficient. Re x F and Nu for different values of T, and with T, = 350°K are shown in Figs. 6 
and 7 for the three conditions so far imposed. Values of Re x Fare identical for both the uniform 
enthalpy profile and the uniform wall temperature conditions. Velocity and temperature profiles 
with T,, = 350°K and T,,, = 1400°K for the cases of uniform temperature gradient and uniform 
wall temperature are given in Figs. S and 9. The isothermal velocity profile is shown chain dotted in 

R r m, l K 

FIG. 5. Temperature profiles for different mixed mean FIG. 6. Effect of boundary conditions on pressure drop 
air temperatures. coefficient. 
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FIG. 7. Effect of boundary conditions on Nusselt number. FIG. 8. Velocity profilesfor different boundary conditions. 

Fig. 8 and the uniform property temperature profiles for the two cases are shown chain dotted in 
Fig. 9. 

(c) Free convection effects 
Solutions with the uniform wall temperature condition are presented for different values of 

Gr/Re. Axial momentum and conduction changes are neglected. Equation (12) becomes 

0 = - ; (R/p) . dR + {ii,,, T: rm/[4 (T m - ~w)ll (GM4 r” d (R/T) dRYdIe dR VW 

Nu is given b; (27b) and (T, - T) by (28b). 
1 0 

In deriving solutions for given values of each of T,, Tm and Gr/Re it is necessary first to assume a 
value of 0, in addition to the temperature profile. From (12~) a velocity profile is obtained and from 
(11) a new value of Urn. NU and a new temperature profile are derived and with the new value of 
Dm and temperature profile the cycle of computation is repeated. A number of iterations produces 
the final solutions. The uniform wall condition is approached via the uniform enthalpy profile 
condition, as outlined in Section (b). 

Re x F is found from (14) and the values of this and of Nu are shown for different values of 
GrlRe with TW = 350°K and Tm = 1400°K in Fig. 10. The effect of free convection on the velocity 
and temperature profiles is shown by the full lines in Figs. 11 and 12. Two profiles are shown, one 
when no free convection is present, Gr/Re = 0, and the other with a contribution of free convection 
indicated by GrlRe = 40. 
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FIG. 9. Temperature profiles for different boundary 
conditions. 

(d) Axial conduction and momentum change effects 
So far axial gradient terms involving 5c1/3X 

and aTlaX have been neglected. These terms are 
evaluated from the velocity and temperature 
profiles and values of Nusselt number, derived 
for the conditions of uniform wall temperature 
with axial momentum and conduction changes 
neglected. Equation (21), with no axial conduc- 
tion, gives 

r, : cons’ = 350°K I 
T, :1400°K 

20 

Gdffe 

FIG. 10. Effect of Grashof:Re,ynolds number ratio on 
Nusselt number and pressure drop coefficient. 

(ii) (l/urn) [+ (au/aX)/aX], which appear in 
equation (12). 

1 21~ tiu u au, -- 
llm 2:x = &- ,,a2 

ELI Unr,$,,, a(Girr: 14 =ax+. G PX ’ 
from (4) 

au 2(liptd = ax+ UPnqy- 

In laminar flow of high temperature gases the 
change in density is predominantly due to changes 
in temperature, changes in pressure being rela- 
tively small. For gases obeying the perfect gas 
equation of state 

This yields the relationship between mixed UT?8 ax =II,EX 
mean temperature, Tm, and axial distance, X. 
Gradient terms are evaluated from finite dif- 

5 (dl Pm) 1 +Tmd 
= pm ax- = T;; ---ax = fi 9 say (30). 

ference expressions using the computer. 
Consider the valuation of(i), (l/urn) &#Xand 4 and /3 are found for each value of R. 
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Gr/Re4O,Re= 1000 

0 0.25 OS 0.7s I-O 

R 

FIG. 1 I. Velocity profiles for different Reynolds and 
Grashof numbers. 

In (12) the term in 6, is more significant than that 
in 8. 

The terms in iik (aT/aX)pX, ahpXandeh,/aX 
in equations (27) and (28) are evaluated without 
difficulty. 

In deriving the uniform wall temperature 
solutions for a given value of each of T,, T,,, and 
Gr/Re a value of 0, must be first assumed along 
with a temperature profile. Equation (12) gives a 
velocity profile and (11) a new value of 0,. 
Equation (27) gives Nu and (28) gives a new 

FIG. 12. Temperature profiles for different Reynolds and 
Grashof numbers. 

temperature profile. The cycle of computation 
may be repeated if necessary. 

With values of NU obtained in this way it is 
possible to re-determine the axial gradient terms 
from (21). This was not necessary however for 
the range of values of Re presented here. 

Typical effects of axial momentum and con- 
duction upon velocity and temperature profiles 
are shown by the broken curves in Figs. 11 and 
12, applicable to Re = 1000, TLL. = 350”K, 
T, = 1400°K and Gr/Re = 0 and 40. With 
GrlRe = 0, Nu - 3.84, disregarding axial effects, 
and Nu = 3.80 allowing for them, with Re = 1000, 
Corresponding values of Re x F are 11.79 and 
l-34. The axial momentum effect is more signi- 
ficant than the conduction effect. 

The effect of a variation in Reynolds number 
is shown for some typical conditions in Table 1. 
It will be seen that there is negligible change in 
value of NU and Re x F. There is little change in 
the velocity and temperature profiles. 

Table I. Eflect of Reynolds number allowing for axial 
conduction and momentum change 

TW = 350°K (const.), r,,, = 6OO”K, Cr/Re = 0. 
- _Y 

Re loo0 100 50 

NLC 3.70 3.70 3.70 
Re x F 644 6.02 5.98 

For comparison it should be noted that if no 
allowance is made for axial conduction and 
momentum change and the analysis is of the 
type described under heading (b), above, for 
constant wall temperature, then the values of Nu 
and Re x F for the temperatures of Table 1 are 
3.67 and 13.46 respectively. For this analysis 
pressure change is due to viscosity alone and 
F=f. 

The dependence of NU and Re x F upon 
GrlRe with Re = 50 is shown in Fig. 13. 

DISCUSSION 

The results show that over a wide range of 
temperature in which the properties of air vary 
considerably the value of the Nusselt number, 
evaluated with a conductivity equal to that at 
the mixed mean temperature, is surprisingly 
steady. For the conditions presented in Fig. 7 
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FIG. 13. Effect of Grashof:Reynolds number ratio on 
Nusselt number and pressure drop coefficient, with 
allowance for axial conduction and momentum change. 

the maximum variation in the value of NU for 
the uniform temperature gradient and the uni- 
form wall temperature conditions is 5.7 per cent 
of the lowest, constant property, value. It is 
demonstrated also how the different imposed 
conditions give different solutions. Experimental 
support for the constancy of the value of NU at 
the lower temperature ratios, Tm/TE, for the 
uniform wall temperature condition is given by 
Kays and Nicoll [ 171. These workers investigated 
the cooling of air for comparable wall tempera- 
ture and for temperature ratios up to 1.79 and 
found negligible change in Nu. It is also of 
interest that for air heating the values of local 
Nusselt numbers along the entry length are close 
to those predicted by constant property analysis 
and this state of affairs probably extends to air 
cooling. 

Nusselt numbers for the uniform temperature 
gradient condition, presented in Fig. 3, are 
shown in Fig. 14 as a function of Tu, and 
temperature ratio. Deissler [6] expressed NU as a 
function of this ratio and the relationship is 
shown by the broken curve. The maximum value 
of temperature ratio given by Deissler is l-67 and 
the present analysis reveals that at higher values 
of this ratio the value of Nu decreases. 

4 7. 

I ’ 
ia7 
i -= constl 

I 
! ax 

/ Deisslerk solution I 
46 

43 
IO 2.0 3.0 4.0 50 

Tm / T. 

FIG. 14. Variation of Nusselt number with temperature 
ratio at different wall temperatures. 

The uniformity in the value of Nu does not 
extend to the velocity and temperature profiles, 
where there are significant deviations from the 
constant property profiles. In Fig. 6 the product of 
Reynolds number and pressure drop coefficient 
shows a marked variation with temperature, but 
is not so dependent upon the imposed boundary 
condition. Figure 15 shows Re x F for the 
uniform temperature gradient condition as a 
function of temperature ratio. It should be noted 

16 
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FIG. 15. Variation of friction coefficient with tempera- 
ture ratio at different wall temperatures. 
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that in the results shown in Figs. 6 and 15 the 
pressure drop coefficient, F, is the same as the 
friction coefficient,J The values correlate well, 
with little dependence upon wall temperature. 
Values calculated from Deissler’s results lie 
close to the Tw = 350” curve up to temperature 
ratios of 1.67. 

The axial momentum change arising from the 
decreasing velocity of the cooling gas has im- 
portant effects. Although a decrease in Re 
creates a greater rate of decrease of velocity with 
distance the decrease in mass rate of flow results 
in the momentum change being unaltered. Thus 
the effect of axial velocity gradients is almost 
independent of the actual value of Re. The axial 
momentum change gives rise to a force opposing 
motion, a change in velocity profile and a de- 
crease in the value of Re x F. Because of the 
more rapid cooling at larger temperature dif- 
ferences these effects are more marked at higher 
temperature ratios. The changes in temperature 
profile and in the value of Nu are not as striking. 

At very low Reynolds numbers with large 
temperature differences the neglect of radial 
velocity in the analysis becomes less justifiable. 
It is of interest to note that the reduction in the 
value of Re x F, as a result of the allowance for 
axial gradients, is not due to a breakdown in the 
assumed model, for the reduction occurs with a 
value of Re = 1000 when the neglect of radial 
velocity is justifiable. For low values of Reynolds 
number and large temperature differences there 
is a need to carry out a fuller analysis to ascertain 
the effects of radial velocity. 

Allowance for axial conduction in the theory 
presented here does not produce very different 
results in the laminar range down to Re = 50. 
This is not to say that axial conduction may be 
neglected. For consider a cross section of the 
tube at right angles to the flow and another cross 
section, parallel and a very small distance away. 
The energy transfer by axial conduction into 
the thin disc formed by these sections ranges 
from 0,005 per cent of the total net energy trans- 
fer for Re = 1000 to 2.07 per cent at Re = 50, 
with Tw = 350°K and Tm = 600°K. The axial 
conduction as a percentage of the total net 
energy transfer at different Reynolds numbers is 
shown in Fig. 16. In the experimental determina- 
tion of Nu allowance for axial conduction 

BJ1 
a 

1 hi 
50 100 500 000 

Re 

FIG. 16. Axial conduction as a proportion of net energy 
transfer at different Reynolds numbers. 

becomes more important as Re is reduced. This 
is in line with the findings of Petukhov and co- 
workers [13], [18], who found allowance for 
axial conduction important in experimental 
work on liquid metals at Peclet numbers less 
than 160. This corresponds to Re < 240 for air 
at 600°K. Singh [12] found axial conduction to 
be of importance for Peclet numbers less than 
100. 

The decrease of Nu associated with an increase 
in the free convection effect, indicated by an 
increase in the value of Gr/Re, is in accord with 
the constant property solutions of Hanratty and 
co-workers [lo]. Allowance for gravitational 
force increase the pressure drop and the product 
Re x F increases with Gr/Re, at constant 
Reynolds number. The pressure drop is depen- 
dent upon a complex of factors involving the 
viscous stress at the wall, the gravitational force 
and the momentum change. These interact and 
the use of a pressure drop coefficient seems 
more appropriate than a summation of sup- 
posedly separate influences. 

Free convection does not have a significant 
effect upon the temperature profile but the effect 
observed on the velocity profile is of a funda- 
mental interest. The denser gas close to the wall 
is retarded and the velocity profile deformed, as 
shown in Fig. 11. Ultimately a reversal of flow 
occurs close to the wall. In experimental studies 
using dye in water Scheele, Rosen and Hanratty 
[II] showed that a symmetrical downward flow 
at the wall develops. A further small increase 
in Gr[Re creates an asymmetric condition and 
there follows a sudden transition to eddying flow. 
This transition to turbulence, occurring at a 
laminar flow Reynolds number, enhances the 
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heat transfer. Scheele and Hanratty [19] in- 
troduce a dimensionless parameter, which can be 
shown equal to ~VU Gr;B Re, as a measure of the 
free convection effect. Their theoretical analysis 
for the conditions of uniform properties and 
uniform heat flux shows zero velocity gradient 
to be attained at the wall when ~VU Gr,‘B Re = 52.2. 
Experiments with water show a transition to 
unsteady motion at NU Gri8 Re = 59. Taking the 
appropriate value of IVU from reference [lo], 
the critical value of Gr/Re for zero velocity 
gradient at the wall is 114. The analysis presented 
in the present paper gives zero velocity gradient 
when Gr/Re = 72, with T, = 600”K, TLu 
= 350°K and Re = 50 and the profile is shown 
in Fig. 17. Because of the onset of unsteady 
motion the results of the analysis with Gr/Re > 72 
are not of practical value. 

In seeking an explanation for the difference 
in the critical value of Gr/Re obtained by the 
two analyses, an examination of the velocity 
profiles in Fig. 8 reveals that the two different 
boundary conditions produce the same velocity 
gradient near the wall. A comparison of this 
with the uniform property gradient shown in the 

30 
r, =corE.t. =350-K / I 
cl =6000K 
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same figure shows that property variation is a 
factor which runs counter to flow reversal. 
Figure 11 reveals that the axial momentum 
change increases the tendency to flow reversal 
due to free convection. 

CONCLUSIOSS 

1. With a value of conductivity appropriate 
to the mixed mean temperature there is less 
than 6 per cent variation in Nusselt 
number over a wide range of temperature 
ratios. 

3 _. 

3. 

4. 

5. 

6. 

7. 

There is a greater variation with tempera- 
ture in the value of the product of the 
Reynolds number and pressure drop co- 
efficient. There is good correlation of this 
product with temperature ratio, with little 
dependence upon wall temperature, as 
shown in Fig. 15. 
Variation of physical properties causes 
considerable deviation from the uniform 
property velocity and temperature profiles. 
Axial momentum change is important, 
particularly at higher temperature ratios. 
The effect, which is almost independent of 
the value of Reynolds number, is to 
decrease the value of the pressure drop 
coefficient. At low Reynolds numbers with 
high temperature ratios there is a need for 
fuller analysis in which allowance is made 
for radial velocity. 
Axial conduction becomes of increasing 
importance as the Reynolds number is 
reduced below 200. 
Free convection causes appreciable in- 
crease in the value of the pressure drop 
coefficient. 
Reversal of flow near the wall occurs at 
lower values of GrlRe than in the uniform 
property solution. 
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The necessary integrations with respect to 
radius were carried out by the use of Simpson’s 
rule. A check on errors due to the use of incre- 
ments of radius which were too large was ob- 
tained from the velocity and temperature profiles. 
The mixed mean temperature was derived from 
these and the value compared with the original 
“imposed” value. Discrepancies not disappear- 
ing on further iteration were remedied by the 
use of smaller increments of radius. 

Evaluations at the following radii were found 
to give satisfactory accuracy: R from 0 by 
increments of 0.05 to 0.9, 0.925, 0.95, O-9625, 
O-975, 0.9875, 1.000. The smaller increments 
close to the wall were necessary because of the 
steeper gradients. 

R&urn&-L’effet de la variation de la chaleur sptiifique, de la densiti, de la viscositl et de la con- 
ductivite thermique avec la tempirature, est recherche thioriquement pour un ecoulement d’air 
refrigirant dtveloppe dans un tube circulaire. Des solutions numkriques sont prCsentCes qui ont et6 
obtenues zi l’aide d’un calculateur numtrique et dans une gamme de tem@ratures de 350 & 25OO’K. 

Les equations de quantite de mouvement et de I’Cnergie sont considir&s et les solutions numdriques 
des profils de tempkrature et de vitesse, le nombre de Nusselt et le coetlicient de chute de pression sont 
don&s pour dif%rentes temp&atures moyennes. 

Des solutions sont prCsenttes pour les conditions de: I-Tous les gradients axiaux de temp&ature 
B rayon fix6 egaux au gradient de temperature globale. 2-Temptrature parietale constante. 

En plus de montrer les effets de la variation des proprietts, les solutions montrent aussi que l’effet 
de laconduction axiale devient important aux faibles nombres de Reynolds et que l’effet du changement 
de la quantite de mouvement axiale peut etre considirable pour de grandes diffirences de temptrature 
entre I’air et la paroi. Pour un Ccoulement vertical ascendant, l’effet de la force de gravitation est 
etudie et la solution numtrique indique un renversement de l’tcoulement pr&s de la paroi g une valeur 

plus faible de Gr/Re que dans la solution avec propriCtCs uniformes. 

Zusammenfassung-Der Einfluss der .&nderung der spezifischen WIrmekapazitat der Dichte, der 
ZLhigkeit und der WBrmeleitfahigkeit mit der Temperatur wird theoretisch fiir einen ausgebildeten 
Luftstrom, der in einem Rohr mit Kreisquerschnitt kiihlt, untersucht. Es werden numerische Lasungen 

H.Xt.--?S 
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angegeben, die mit einem Digitalrechner erzielt wurden und fur einen Bereich der Lufttemperaturen 
von 350 bis 2jOO”K gelten. Die Impuls- und Energiegleichungen werden berucksichtigt und fur unter- 
schiedliche mittlere Temperaturen werden numerische Losungen der Temperatur- und Geschwindig- 
keitsprofile, Nusseltzahl und Druckabfallbeiwert angegeben. 

Es werden Losungen aufgefiihrt fiir die Bedingungen, dass: 

1. alle axialen Temperaturgradienten bei einem bestimmten Radius dem Gradienten der Mischtem- 
peratur gleich sind 

2. konstante Wandtemperatur vorliegt. 

Zusltzlich zum gezeigten Einfluss der Stoffwertevariation ergeben die Losungen such, dass der 
Einfluss der axialen Leitung bei niedrigen Reynoldszahlen an Bedeutung gewinnt und dass bei grossen 
Temperaturunterschieden zwischen Luft und Wand der Einfluss der Axialimpulsanderung betrachtlich 
sein kann. Fiir senkrechte Aufwtitsstriimung wird der Einfluss der Schwerkraft untersucht und die 
numerische Losung zeigt einen Umkehrstrom in Wandnlhe bei niedrigeren Werten von Gr/ Re als es 

bei der einheitlichen LGsung fir die Stoffeigenschaften der Fall ist. 

.~HHoTaqnrr-TeopeTlrsech:It nccneJyercn BjInanne n3>teriennn Termo6~rnocTn, IM~TH~CTII, 

BRBHOCTII II TeII7IOIIpOBO~HOCTH C TMIepaTypO& IIplI OX;raHiJ&eHltit p33BIITOTO IIOTOIia B03- 

Ay?ra B IipyIVIOli Tpx6e. nplIBeA’?HbI WICZ?HHbIe pe3j’ZbTaTbI &WI ;[IIXI330Ha TWfII+?paT)‘p 

BO3A)‘Xa OT 350 ;I;0 %o@%, lIO.XyWHHbIt? Ha I(HI#pOBOfi BbIWICJIllTt?;IbHOfi ,t3IlIlIHe. 

PaCCMOTpeHbI ~p3BHeHHR KOJIHYfXTBa ~BIIiWHHR II 3HeplYIIl II IIpIIBe;rt?HbI ‘IIIC.TeHHbIe pe3- 

yJIbTaTb1 XJIFI IIpO~II;ret TeMIepaTj’pbI II CKOpOCTII, IipHTepIIti HyCCtUbTa II KO3~@t~ilWlT 

nepenaaa ;[anrtennn znn pamrr~sns c~temami~x cpelnrrx Telrneparyp. 
Pt?IIEHWl IIpezCTaBJIeHbI ;IJfI CJIeJyIO~lIX J-CJIOBIIti : 

1. Bee XiCElaJbHbIe rpa;rHeHTbI TeXIIepaTypbI IIpA ~lIliCHpOB3HHO~l pa;rrryce paslrhr 

rpa;lrIeHTy Cpe~H6?06%&tHO8 TeMIIepZlT)-pb1. 

2. nOCTORHH3fI TWlIEpaT)-pa CTt?HKII. 

~O~UI~lO TOFO, riTO pUIIeHlIfi yKa3bIBaIOT Ha BZIIIRHlle H3MeHeHIIFI CBOfiCTB, OHlI TBW-KfZ IIOti3:3- 

bIBIIOT, cITO BJIIIfIHIIe IIpO;rOabHO~ TeIIXOIIpOBO~HOCTII CTPHOBFITCfI BaiKHbI>l IIpkI SIX7bIX 

3HaWHIItZX IipIITepIIR PCd%HO.7bACa, a B.1WIHEIB aIXII3JIbHO~O EI3MeHeHWl IiOJIKWXTBEl ABHit;eHW4 

JlOXeT 6bITb 3HEl’lIITejIbHbIM IIpH 6OXbILtOfi pa3HOCTEI TeWIep2lTyp Me’W;I~ BO3i[jKO,I EC CTeHIiOti. 

~f3J’WleTCfI BJIIlFIHIIe FpElBIITaQIIOHHOll: CIIJIbI AJK IIOTOKa, HaIIpaBZIeHHOrO BepTlIIi&7bHO 

nseps. Yncnemioe pemenrre yriaabmaer Ha nepe,reay HanpaBnemrn noToh’a y cremin nprr 
>ff?HbUIeY 3HaWHEIH BBJIIWIHbI Gr/Re, Yeal B peUIf?HEIM C O;rHOpO~HbINH CBOfiCTKN~r. 


